171 research outputs found

    Characterizing human perception of emergent swarm behaviors

    Get PDF

    Asynchronous control with ATR for large robot teams

    Get PDF
    In this paper, we discuss and investigate the advantages of an asynchronous display, called "image queue", tested for an urban search and rescue foraging task. The image queue approach mines video data to present the operator with a relevant and comprehensive view of the environment by selecting a small number of images that together cover large portions of the area searched. This asynchronous approach allows operators to search through a large amount of data gathered by autonomous robot teams, and allows comprehensive and scalable displays to obtain a network-centric perspective for unmanned ground vehicles (UGVs). In the reported experiment automatic target recognition (ATR) was used to augment utilities based on visual coverage in selecting imagery for presentation to the operator. In the cued condition a box was drawn in the region in which a possible target was detected. In the no-cue condition no box was drawn although the target detection probability continued to play a role in the selection of imagery. We found that operators using the image queue displays missed fewer victims and relied on teleoperation less often than those using streaming video. Image queue users in the no-cue condition did better in avoiding false alarms and reported lower workload than those in the cued condition. Copyright 2011 by Human Factors and Ergonomics Society, Inc. All rights reserved

    An Hybrid, Qos-Aware Discovery of Semantic Web Services Using Constraint Programming

    Get PDF
    Most Semantic Web Services discovery approaches are not well suited when using complex relational, arithmetic and logical expressions, because they are usually based on Description Logics. Moreover, these kind of expressions usually appear when discovery is performed including Quality-of-Service conditions. In this work, we present an hybrid discovery process for Semantic Web Services that takes care of QoS conditions. Our approach splits discovery into stages, using different engines in each one, depending on its search nature. This architecture is extensible and loosely coupled, allowing the addition of discovery engines at will. In order to perform QoS-aware discovery, we propose a stage that uses Constraint Programming, that allows to use complex QoS conditions within discovery queries. Furthermore, it is possible to obtain the optimal offer that fulfills a given demand using this approach.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIN2006-0047

    SUAVE: Integrating UAV video using a 3D model

    Get PDF
    Controlling an unmanned aerial vehicle (UAV) requires the operator to perform continuous surveillance and path planning. The operator's situation awareness degrades as an increasing number of surveillance videos must be viewed and integrated. The Picture-in-Picture display (PiP) provides a solution for integrating multiple UAV camera video by allowing the operator to view the video feed in the context of surrounding terrain. The experimental SUAVE (Simple Unmanned Aerial Vehicle Environment) display extends PiP methods by sampling imagery from the video stream to texture a 3D map of the terrain. The operator can then inspect this imagery using world in miniature (WIM) or fly-through methods. We investigate the properties and advantages of SUAVE in the context of a search mission with 3 UAVs

    SUAVE: Integrating UAV Video Using a 3D Model

    Full text link

    An Approach to Temporal-Aware Procurement of Web Services

    Get PDF
    Es también una ponencia de: International Conference on Service-Oriented Computing: ICSOC 2005: Service-Oriented Computing - ICSOC 2005 pp 170-184. book ISBN: 978-3-540-30817-1 e-ISBN: 978-3-540-32294-8In the context of web service procurement (WSP), temporal–awareness refers to managing service demands and offers which are subject to validity periods, i.e. their evaluation depends not only on quality of service (QoS) values but also on time. For example, the QoS of some web services can be considered critical in working hours (9:00 to 17:00 from Monday to Friday) and irrelevant at any other moment. Until now, the expressiveness of such temporal–aware specifications has been quite limited. As far as we know, most proposals have considered validity periods to be composed of a single temporal interval. Other proposals, which could allow more expressive time–dependent specifications, have not performed a detailed study about all the underlying complexities of such approach, in spite of the fact that dealing with complex expressions on temporality is not a trivial task at all. As a matter of fact, it requires a special design of the so–called procurement tasks (consistency and conformance checking, and optimal selection). In this paper, we present a constraint–based approach to temporal–aware WSP. Using constraints allows a great deal of expressiveness, so that not only demands and offers can be assigned validity periods but also their conditions can be assigned (possibly multiple) validity temporal subintervals. Apart from revising the semantics of procurement tasks, which we previously presented in the first edition of the ICSOC conferences, we also introduce the notion of the covering set of a demand, a topic which is closely related to temporality.Ministerio de Ciencia y Tecnología TIC2003-02737-C02-0

    Human Interaction with Robot Swarms: A Survey

    Get PDF
    Recent advances in technology are delivering robots of reduced size and cost. A natural outgrowth of these advances are systems comprised of large numbers of robots that collaborate autonomously in diverse applications. Research on effective autonomous control of such systems, commonly called swarms, has increased dramatically in recent years and received attention from many domains, such as bioinspired robotics and control theory. These kinds of distributed systems present novel challenges for the effective integration of human supervisors, operators, and teammates that are only beginning to be addressed. This paper is the first survey of human–swarm interaction (HSI) and identifies the core concepts needed to design a human–swarm system. We first present the basics of swarm robotics. Then, we introduce HSI from the perspective of a human operator by discussing the cognitive complexity of solving tasks with swarm systems. Next, we introduce the interface between swarm and operator and identify challenges and solutions relating to human–swarm communication, state estimation and visualization, and human control of swarms. For the latter, we develop a taxonomy of control methods that enable operators to control swarms effectively. Finally, we synthesize the results to highlight remaining challenges, unanswered questions, and open problems for HSI, as well as how to address them in future works

    Scalable target detection for large robot teams

    Get PDF
    In this paper, we present an asynchronous display method, coined image queue, which allows operators to search through a large amount of data gathered by autonomous robot teams. We discuss and investigate the advantages of an asynchronous display for foraging tasks with emphasis on Urban Search and Rescue. The image queue approach mines video data to present the operator with a relevant and comprehensive view of the environment in order to identify targets of interest such as injured victims. It fills the gap for comprehensive and scalable displays to obtain a network-centric perspective for UGVs. We compared the image queue to a traditional synchronous display with live video feeds and found that the image queue reduces errors and operator's workload. Furthermore, it disentangles target detection from concurrent system operations and enables a call center approach to target detection. With such an approach we can scale up to very large multi-robot systems gathering huge amounts of data that is then distributed to multiple operators. Copyright 2011 ACM

    A Web Service Composition Method Based on OpenAPI Semantic Annotations

    Full text link
    Automatic Web service composition is a research direction aimed to improve the process of aggregating multiple Web services to create some new, specific functionality. The use of semantics is required as the proper semantic model with annotation standards is enabling the automation of reasoning required to solve non-trivial cases. Most previous models are limited in describing service parameters as concepts of a simple hierarchy. Our proposed method is increasing the expressiveness at the parameter level, using concept properties that define attributes expressed by name and type. Concept properties are inherited. The paper also describes how parameters are matched to create, in an automatic manner, valid compositions. Additionally, the composition algorithm is practically used on descriptions of Web services implemented by REST APIs expressed by OpenAPI specifications. Our proposal uses knowledge models (ontologies) to enhance these OpenAPI constructs with JSON-LD semantic annotations in order to obtain better compositions for involved services. We also propose an adjusted composition algorithm that extends the semantic knowledge defined by our model.Comment: International Conference on e-Business Engineering (ICEBE) 9 page
    • …
    corecore